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in all the subsequent time of the motion while the inequalities (4.11) are satisfied, it 

hence follows that W < WI. This inequality will be satisfied at least while lqjl, 14 1, 
11 di’ 11 (or I Ii I) remain not greater than A r. But the initial values of these quantities 
are less than Ar by assumption, and since they change continuously, they cannot become 

greater than A1 without first becoming equal tocAl. But this latter is impossible (under 
the condition Vi > eli) because of (4.12). Taking account of (4.9), it follows from the 
inequality (4.12) that I E(“I < Al, on which basis we deduce compliance with all the 

conditions (4.2). The theorem is proved. 

Let us note that Theorems 1 and 2 remain valid even when the fluid in the cavity is 

viscous p-1, and dissipative forces dependent on qi’(j =i ,..., n - 1) act on the elastic 

body. Moreover, in this case the validity of a theorem analogous to Theorems VI and 

VII in p],(pp. 184-185) can be proved. 
The inversion of the Lagrange theorem given by Chetaev [S], which is analogous to 

the proof of Theorem III in p] (p. 178), can also be extended for an elastic body with 

a fluid. 
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Papers p-51 deal in detail with the stability of steady plane-parallel convective motion 
between planes at different temperatures. The present paper concems the stability of 
the motion which arises between parallel vertical surfaces when the transverse tempera- 

ture difference is accompanied by a longitudinal (upward or downward) temperature gra- 
dient. The presence of a longitudinal temperature gradient has a marked effect on the 

structure of the steady motion (see [S. 71); the character of this effect differs depending 
on whether heat is applied at the bottom or at the top. The effect of top heating on the 
stability of convective motion was investigated by the authors of 18. 91. whose results 
are criticized below. To our knowledge the effect of bottom heating has not been 
investigated. 

We solved the boundary value problem for the amplitudes of the normal perturbations 
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of the steady motion by the Runge-Kutta and Bubnov-Galerkin methods. Our results 
indicate, among other things, that bottom heating generally has a destabilizing effect. 

The two instability mechanisms (i.e. hydrodynamic instability of the convective counter- 

currents and convective instability of the bottom-heated fluid) are closely interrelated 

in this case. Hydrodynamic instability is associated with monotonically growing pertur- 
bations. Depending on the values of the determining parameters, convective instability 

can be produced either by monotonic or by oscillatory perturbations. Top heating has 

the effect of increasing stability, and complete stabilization occurs upon attainment of 
a certain limiting value of the longitudinal gradient. 

1. Steady motion. Let us consider the convective motion of a fluid in the plane 
layer between the infinite parallel vertical planes r = 3: h. The temperatures at the 

planes are specified and vary linearly with the gradient A over the height of each plane, 

T= ---AZ&E3 for x=th (1.1) 

Here z is the vertical coordinate and 2 @ the difference between the temperatures 

of the two planes which is the same at each level. 

The convection equations in standard notation are 

g t vVT=xAT, div v = 0 (1.3) 

We obtain the following steady solution of Eqs. (1.2), (1.3) which describes the plane- 

parallel convective motion : 

v, = vy = 0, u, = vok), To = --AZ. -l- zo(4, po = ~a(4 (1.4) 

Formulas (1.2), (1.3) also yield the system 

vv,“+RP’o =px I ’ dp~ I @AZ = C, XT~” +Av,z() (‘1.5) 

which enables us to find v,, z, and p. . 
Here c is the separation-of-variables constant. The functions v,, and r,, satisfy the 

conditions h 

vo (-1_ h) = 0, z, (rt_ h) = =F 8, c 
v,dz == 0 (1.6) 

Lh 

(the latter condition indicates that the convective stream is closed). 

Let us rewrite (1.5). (1.6) in dimensionless form, taking as our units the distances, 

velocities, temperatures and pressures h, gf16h2 / v , 8, p gpeh , respectively. This 
gives us the following equations and boundary conditions for the dimensionless quantities 

vo, 70 and p. (the oddness of the v, and r. profiles implies that C = 0) 

vi” T 70 = 0, ~o”+Rvo=O, z= -2~ dpo 

1 (1.7) 

Here R is the Rayleigh number defined in terms of the longitudinal temperature gra- 
dient. 

With bottom heating (A > 0, i. e. R > 0) , expressions (1.7) yield the following 



Stability of the steady convective motion of a fluid 939 

distributions of the velocity and temperature over the channel cross section: 

1 
no = 2ya 1 

sh yx sin TX 
F---V, Slll~ ) 

To==-7 ;tz+g; 

(r 3 RY4) V.8) 

Changes in the parameter R, distort the v. and r. profiles in a complicated way (Fig. 1). 

Fig. 1 

For R = 0 (no longitudinal gradient ; a transverse temperature difference only) Eqs. 
(1.8) yield a cubic velocity profile and a linear temperature profile 

77s = l/s (2 - z), %a=--2 11.9) 

The intensity of the motion increases with growing R in the interval 0 < R < n4, 

and the velocity becomes infinite as y --t sc (as R + n4). Passage through the value 

R = TC’ is associated with an “inversion” of the steadystate profiles. 
Further increases in R produce new nodes in the velocity distribution, the velocity 

becoming infinite at the points R = (%I)~, (%c)~, . . . These values coincide with 
the critical values of the Rayleigh number associated with the critical range of equilib- 

rium of the fluid in a fixed vertical layer heated from below. It is self-evident that the 

steady flow is hydrodynamically unstable in the neighborhood of these critical points. 

Fig. 2 

With top heating (R < 0) the solution of problem (1.7) can be conveniently writ- 
ten as 
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1 
‘0 = FD 

ch px sin pz shpscospz 
.chpsinp - shp cosp j 

z,-1_+ 
( 

ch px sin p 
+ 

sh pz ens px 
sh p cos p chpsinp i 

(D f th p ctg p + cth p tg p, p4 s - ‘@) 

(1.10) 

The flow slows down considerably with increasing 1 RI , especially in the cenral por- 

tion of the Layer (Fig.2). For sufficiently large 1 R 1 boundary layers are formed at the 
walls and weak reflected flows arise in the cenral portion. 

2. Tha perturbation equatfon6, Merhodc of aolutfon. In order to 
investigate the stability of the steady motion we must consider the perturbed velocity, 

temperature and pressure fields v. + v, To + T, p. + p, where v, T, p are small 
perturbations. Let us write the perturbation equations in dimensionless form, using the 

units of length, velocity, temperature and pressure defined above and introducing the 

unit of time h2 /v. Linearizing over the perturbations, we find from (1.2), (1.3) that 

~+Gl(v,‘C’)v+(vV)vo~ = -V/J+AvfTy 

‘g + G [v~VT+VVZ~] - $ (q) y -&AT 

div v - 0 
( 

GzgF, p:.$) 

(2.1) 

Here G is the Grashof number defined in terms of the transverse temperature difference 
and P is the PrandU number. 

We shall coufine ourselves to the case of plane normal perturbations, 

v, = - al/l I az, vv = 0, V, = ag 1 ax 

q$x, 2, t) = cp (z) e-lttikz, T(s, z, t) = 8 (5) e-At+ikz (2.2) 
where 9 is the stream function, q and 0 are the perturbation amplitudes, k is the real 
wavenumber, and 1 is the degement. 

Substituting (2.2) into (2.1). we obtain the system of amplitude equations 

AA.cp + ikG (vo”‘p - VOACP) i- 0’ = - ~AT 

f A0 + ikG (~~‘9 - ~08) i- 
+ = -j.Jl 

( 
A E & - k’) (2.3) 

The requirement that the velocity and temperature perturbations must equal zero at 

the layer boundaries gives us the system of boundary conditions 

cp “=8=0 =q for z=*i (2.4) 

Homogeneous boundary value problem (2.3). (2.4) defines the spectrum of character- 
istic perturbations and their decrements. The decrements h are generally complex, 

h = 1L, + iA,. The real part h, defines the rate of growth or decay of the perturbations; 
the imaginary part h, is associated with the oscillation frequency and the phase velocity 
of the perturbations. Both components of the decrement h, and hi depend on all of the 
parameters occurring in the boundary value problem (the Grashof number G, the Rayleigh 

number R, the Prandtl number P, and the wavenumber k). The stability boundary of 
the steady motion can be determined from the condition h, CO; this condition defines 
the parameter values for which the perturbations are neutral. 
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Flows (1.8) and (1.10) are odd, which means that “standing”perturbations whose phase 
velocity equals zero ( A, = 0 ) play an important role in their perturbation spectrum. 
The decrements h are real in this case, and the stability boundary with respect to such 
perturbations can be determined from the condition 3L = 0. Setting h =‘O. in (2.3), 
we obtain a boundary condition which can be used to find the neutral standing perturba- 
tions and the associated critical Grashof (or Rayleigh) numbers. 

General boundary value problem (&3), (2.4) for R = 0 yields the special case corre- 

sponding to convective flow without a longitudinal temperature gradient. The decrement 
spectrum and the stability of such a flow are investigated in [l- 51. Another limiting 

case follows for G = 0 (in absence of a transverse temperature difference). In this case 

the boundary value problem yields the spectrum of proper equilibrium perturbations in 

a plane vertical fluid layer heated either from below (R > 0) or from above (R < 0). 
The equilibrium is stable forR < 0 ; for R > 0 the flow becomes unstable at the criti- 
cal values of the Rayleigh number R (k). These critical values are given in [lo]. 

The general case considered in the present paper therefore enables us to evaluate the 

effect of the longitudinal temperature gradient on the stability of the convective motion, 
and also the effect of the transverse temperature difference on the convective stability. 

We determined the decrement spectra and stability boundaries by the Runge-Kutta 

and Bubnov-Galerkin methods. The former method was used largely to determine the 
stability boundaries with respect to the monotonic perturbations; the latter method was 

used to find the decrement spectra and the bounds of oscillatory instability. 
In the case of the Runge-Kutta method we expressed the amplitude equations as a 

system of twelve ordinary first-order differential equations 

ay 1 a~ = f(x,y) (2.5) 

where the components of the vector y are real and are related to the amplitudes go and 

8 by the expressions 

q = Yl -I- iY2, cp’ = YS -f- iy,, cp" = YS + iye, 9" = y7 + 418 (2.6) 

0 = Ye -t iYlO9 8 = Yll + iY,z 

The right sides of system (2.5) can be determined from (2.3). The bouudary condi- 

tions follow from (2.4), 

Yl = Y2 = Ys = Y4 = Ys = Yl, = 0 for z = * 1 (2.7) 
We constructed the general solution of the problem as a linear combination of six 

independent solutions satisfying the evenness conditions for x = O.The requirement of 
existence of a nontrivial solution of system (2.5) which also satisfies the conditions at 
the boundary x = 1 yields a characteristic condition which defines the stability bound. 
Our program for numerical solution of the problem by computer included automatic 
selection of the integration interval (in accordance with the specified degree of accu- 

racy). 
The amplitudes of the stream function and temperature perturbations in the Bubnov- 

Galerkin method were expressed in the form of series in systems of basis functions, namely 
the eigenfunctions of the boundary value problems 
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(i. e. the perturbation amplitudes in the quiescent fluid). 

Our procedure for computing the decrement spectra and critical numbers was that 
described in [3, 41, except for the fact that the matrix elements were determined by 

numerical integration. The stability bounds are usually associated with the lower modes 

of the perturbation spectrum ; this enables us to limit ourselves to eight basis functions 
in the computations. 

We were able to compare the results of computations by the Runge-Kutta and Bubnov- 
Galerkin methods in certain cases (at the monotonic instability boundary. These results 

turned out to be practically coincident in the domain of parameter values investigated. 

3, The case R>o. Hydrodynomfc and convective inctrblllty. 
Let us now examine our results. We begin by considering the case of a longitudinal tem- 
perature gradient directed downward (bottom heating) in addition to a transverse tempe- 

rature drop, In this case we expect two types of instability of the steady state,namely 

hydrodynamic and convective instability. 

Since the number of parameters determining the solution is large, it is expedient to 
begin with a consideration of the stability bounds in the plane G, R for fixed values of 

4ffo 

zoo 

a 
to 24iJ R 

Fig. 3 

the Prandtl number and wavenumber. The 
stability diagram for P = 1 and k = 1 is 

shown in Fig. 3. 

For R = 0 (in the absence of a longitudi- 

nal gradient) the flow becomes unstable at 

the critical number G = 575. Increases in 
R are accompanied by increases in the velo- 
city of the convective flow (see Sect. 1). 
This has the effect of reducing the hydrody- 

namic stability of the convective counter- 
flows, i. e. of decreasing the critical Grashof 
number (Curve 1). As R -+ n4 the velocity 

of the steady motion tends to infinity, and 

hydrodynamic instability ensues for an arbitrarily small G. Passage through the critical 

point R = n4 is associated with an inversion of the velocity and with a decrease in the 
intensity of the steady motion. This is naturally accompanied by an increase in hydro- 

dynamic stability (Curve 2). Thus,Curves 1 and 2 bound the strip of hydrodynamic in- 
stability in the plane G, R ; the width of this strip increases with increasing G. Curves 

1 and 2 are neutral curves for the standing perturbations of zero phase velocity. This 

means that the buildup of perturbations in the strip of hydrodynamic instability is mo- 
notonic. 

In addition to this strip we also have domains of convective instability contiguous 
with the R-axis. In fact, when G = 0 (in the absence of a transverse temperature differ- 
ence) we have a spectrum of critical values of the Rayleigh number (the two lower levels 
for k = 1 are R = 132 and R L- 319;i. e. the points of intersection of Curves 3 and 4 
with the R -axis). Increases in G alter the critical Rayleigh numbers (Curves 3 and 4) 

and lead to a characteristic “closure” of the neutral lines of the monotonic perturbations. 
A similar closure of the convective instability levels with increasing flow velocity is 

described in [5] , where we dealt with the stability of convective flow in an inclined 
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layer. As in [S], the closure of the levels of monotonic convective instability is accom- 
panied by the appearance of a domain of oscillatory instability. In Fig. 3 this domain 
lies between curves 5 and 6 and is cross-hatched (the simply shaded area denotes the 

domain of monotonic instability). Curve 5 is neutral for the oscillatory perturbations; 
Curve 6 separates the domains of oscillatory and monotonic instability. 

The characteristic curves in the stability diagram (Fig. 3) were obtained by treating 

the decrement spectra. One such spectrum corresponding to the cross section G = 100 
is shown in ‘Fig.4. The solid curves represent 

IO the real decrements ; the broken curves repre- 
sent the real part which the pair of complex 

5 conjugate decrements has in common. The 

0 
characteristic points indicated in the spect- 

rum and diagram are as follows: a’ and; b 
are the beginning and end points of the strip 
of monotonic hydrodynamic instability (as 

R + at4 the real decrement h + - oo at the 

critical perturbation point increases at an 

Fig. 4 
infinite rate) ; c is the neutral point of the 

oscillatory perturbations; d is the bound of 

the existence domain of oscillatory perturbations. 

The stability diagram in Fig. 3 refers to the fixed value of the wavenumber k=l. 

The form of the diagram remains qualitatively the same for other values of k,; specifi- 

cally, for all k we have a wedge-shaped domain of monotonic hydrodynamic instability 
(at the point R=d the critical Grashof numbers vanish for all’k, i.e. we have instabi- 

lity with respect to all of the normal per- 

turbations) and a domain of convective 
R 

instability contiguous with the R-axis. 

Fig. 5 Fig. 6 
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Figure 5 shows the neutral curves C (k) for P = 1 and several values of R. We see 
that the minimum critical Grashof number G, decreases with increasing R and tends 

to zero as x + n4. The wavelength of the most hazardous perturbations, which is deter- 

mined by the value of the wavenumber k, at the minimum point, diminishes somewhat: 
the critical wavenumber k,,, increases from 1.4 to 1.8 as R increases from 0 to n4 

Hydrodynamic instability is preserved in the domain R > sc4 (it corresponds to Curve 2 
in Fig. 3, although critical flow in this range is due to the development of convective 

perturbations). 

The structure of convective instability domains is clearly evident in Fig. 6 which shows 

neutral curves in the plane R, k for several G (P = 1). 

For G = 0 (the equilibrium of a bottom-heated vertical layer) the critical Rayleigh 

numbers which define the convection threshold increase monotonically with increasing 

k-. The minimum Rayleigh number for all of the instability levels (the figure shows the 

two bottom layers) is associated with plane-parallel convective perturbations with k =O. 
The onset of a transverse temperature difference is associated with the appearance of a 
narrow resonance strip of hydrodynamic instability near the line R = n: (the width of 

this strip increases with increasing G) and the structure of the convective instability 

domain changes. Specifically, for some G there arises a zone of growing oscillatory 

P = 0.2 

410 
392 
325 

;: 
164 
121 
83.8 
50.0 
20.0 

Table 1 

P=i 

491 
412 
341 
279 
223 
174 
130 

:: 2 
22:s 

- 

- 
I’ = 5 

490 
402 
326 
266 
211 
162 
119 
82.0 
48.9 

perturbations (indicated by cross-hatching 

in the figure). For sufficiently large G we 
have a closure of the neutral lines of the 

monotonic perturbations, and the lower bound- 

ary of convective instability is defined by 

the neutral line of the oscillatory perturba- 

tions over a broad range of k, values. 
As already noted,critical flow in the range 

of Rayleigh numbers 0 < R < n4 is hydro- 
dynamic in character and is associated with 
the instability of the counterflows and con- 

vective streams. One of the results of this . 
fact is that the stability boundary is weakly dependent on the Prandtl number (as is evi- 

dent from the appropriate computations). For R = 0 the critical number G,,, changes by 
not more than 6% over the entire range of P values (see [4] ) ; as R -B ~4 the critical 
number G, tends to zero for all P. The numerical values of G,,, (R) for P - 0.2,1,5 
appear in Table 1. 

It is clear that the critical Grashof number G,,, = 0 for all P in any R >n4 . In fact, 

for any R>n4 there always exists a perturbation with a wavenumber k for which the 

critical Grashof number is equal to zero. For example, for R= 132 this perturbation is 
the one associated with k=: 1 (the intersection of Curve 3 with the R-axis in Fig. 3). 

The values of k corresponding to other values of R are easy to determine: they are 
defined by the points of the neutral curve R (k) of the fundamental level of convective 

instability (Fig. 6, G = 0). 

4. The case R < 0. Strbitiartion of the aterdy motfon, Now 
let us consider the case where the longitudinal temperature gradient is directed upward 
(top heating). The vertical density stratification produced by such heating is stable, so 
that the convective instability is not active in this case. Critical steady motion can 
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arise only through hydrodynamic instability of the flow associated with the transverse 
temperature difference. 

As we see from formulas (1.10) and Fig. 2, the flow slows down for sufficiently large 
values of the longitudinal temperature gradient. and a stagnation zone between the 

ascending and descending currents arises in the central portion of the layer. This weak- 
ens the interaction of the convective counterflows. Moreover, increases in the longitud- 

inal gradient are accompanied by decreases in the maximum velocity urn and in the 

thickness of the boundary layer 6: v,,, A g$@h2/vp2, 6 N h / p. The effective Rey- 
nolds number therefore increases with growing 1 fi 1 for large 1 fi 1 ;this decrease is 

described by the law Reefi- 6 / IfifW. The above factors result in stabilization of 
the convective current with increasing 1 R I. 

For R < 0 the neutral curves G(k) are quite similar to those shown in Fig. 5. They 

Fig. 7 

monotonically and tends to zero. 

have a minimum for some Ic,and a right asymptote 
which bounds the range of hazardous perturbations 

from the shortwave side. As 1 R 1 inceases,the 

minimum value G, increases rapidly (Fig. 7) and 
tends to infinity when the Rayleigh number reaches 

some limiting value 1 R 1 = R,. For P = 1 
and P = 0.2 the limiting values are R, = 11 Z 
and R, ‘= 125 , respectively. For 1 R 1 > Rm 
the flow is stable with respect to normal perturba- 

tions of arbitrary wavelength for all values of the 

Grashof number. The wavelength of the most 

hazardous perturbations increases with increasing 

IN. As IR1 - R, the wavenumber decreases 

Figures 8 and 9 show the minimum Grashof number G, and the critical wavenumber 

&,,(A) as functions of R (the solid and broken Curves in Fig. 8 correspond to P = 1 
and P = 0.2, respectively). It should be noted that’although. oscillatory instability is 
possible for certain parameter values in the case of bottom heating (R > 0) , the lower 

boundary of the instability domain defined by minimization over k is associated with 

monotonic perturbations. Thus, according to our computations, critical steady motion 

must give rise to steady secondary motions for all R*(such secondary motions in the case 

Fig. 8 Fig. 9 
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R = 0 are investigated numerically in [ll]) ( l ). 
The case of top heating (R ( 0) is especially interesting in connection with the 

problem of stability of convective motion in a vertical slot of finite height. The con- 

vective flow occasioned by the transverse temperature difference is accompanied by a 
longitudinal convective upward flow of heat. If the channel is sealed at the top and 

bottom by plugs with a finite heat conductivity, then heat accumulates at the top and 

automatically produces an upward longitudinal temperature gradient. This gradient is 
determined by the transverse temperature difference, by the ratio of the height of the 

slot to its width, and also (generally speaking) by the conditions of heat transfer at the 

ends (some approximate and experimental results on the longitudinal remperature gra- 

dient will be found in [la, 133). Thus, velocity and temperature profiles (1.10) model 

the convective flow in a vertical layer of finite height (though, of course, only at a suf- 

ficient distance from the ends of the slot), and the results of Sect.4 enable us, among 

other things, to draw conclusions about the stability of such a flow. 
As already mentioned, the stability of convective motion in the case of bottom heating 

is analyzed in [8, 91. The authors of [8] who first formulated the problem used the Bub- 
nov-Galerkin method combined with the simplest approximations (the stream function 

containing one basis function and the temperature two basis functions) to solve the am- 

plitude equations. This approximation implied instability with respect to “r~ning” per- 
turbations. As was shown in [4], this conclusion is invalid: it is not confirmed by the 

higher approximations of the method. The instability is in fact produced by standing 

perturbations which are not evident from the approximation used in [S]. 
The authors of [9] also used the Bubnov-Galerkin method with a basis different from 

(2.6) (their expansions contained as many as 16 basis functions). They used their results 

to draw conclusions about instability with respect to standing ~rt~bations and to deter- 

mine the critical numbers for P = 25 and P = 1000. However, their amplitude 

boundary value problem contains an error. + the heat conduction equation lacks a term 

containing the longitudinal temperature gradient (in our notation the term (R / P) rp' 
in (2.3)). This meant, in effect, that they were taking into account the effect of the 

longitudinal temperature gradient on the steady flow, but not on the behavior of the 

perturbations. The numerical results of [9] should also be regarded with caution because 
the lower part of the decrement spectrum is occupied by thermal levels for sufficiently 

large Prandtl numbers (P > lo) ( see [4] ), which means that higher approximations 

are required for reliable computation of the stability boundary. 
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The equation of motion of dynamic systems used in modeling the behavior of engineer- 
ing devices usually allow one to isolate not only the system parameters, but also the 
parameter-free (sinusoidal, polygonal, relay-type, etc. ) normalized characteristics de- 

scribing the individual elements of the device under consideration. The choice of such 
characteristics is always to some extent arbitrary, being dictated by: (a) the need to 

ensure adequate agreement between the behavior of the approximating characteristic 
and that of the true characteristic of the device, and (b) the need to obtain a system of 
equations amenable to investigation in sufficient detail. 

Suitable choice of a characteristic (a suitable appro~ma~on) is a major phase in the 
construction of a usable model. The chosen characteristic is associated with a specific 


